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Introduction
Heat conduction is a well investigated phenomenon. Its mathematical
description is based on Fourier’s law[1]

§=-\VT, )

which couples heat flux, @, with temperature gradient, OT, (A is heat
conductivity). This law leads to a parabolic field equation for the temperature (if
A is constant)
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Here tis time, p is density, ¢ is heat capacity per unit mass. Fourier’s law holds
for many media in the sufficiently small temperature gradient range.

Heat conduction is the simplest example both for transport processes and for
thermal phenomena. Above we have had a mechanical description of the
transport process in terms of fields and fluxes. At the same time, thermal
properties of the medium are given by certain equations of state.

It is not evident which way the thermal properties correspond to the
mechanical description (1), (2) even in the simple cases, to say nothing of such
equation of state as the following one given by Sato[2] for water
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where
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where subscript cr denotes values corresponding to critical point.

The motivation for the paper comes from the desire to give a thermodynamic
description of heat conduction process to perform calculations for real
substances.

As it is known, thermodynamic concepts are usually introduced into
mechanical problems by means of the hypothesis of local equilibrium[3]. Such a
hypothesis is needed to assign to a non-equilibrium state of an element of a
continuum, the entropy and thermodynamic temperature of an accompanying
equilibrium state[4]. Thermodynamic parameters of the element are considered
to be identical to its physical parameters, as it takes place for mass and volume.
However, some properties of the thermodynamic parameters expose themselves
only in the Gibbsian state space. In particular, each thermodynamic parameter
should have the property of being a function of state. Such a feature is often lost
by pure mechanical description. Namely, as it was shown by Chen and Eul[5],
there is no possibility that entropy will become a function of state in the
physical space.

The interaction between elements of a continuum leads finally to certain
relationships between the parameters of neighbouring elements. At the same
time, this should affect their thermodynamic states. Consequently,
accompanying equilibrium states of interacting elements should be also
coupled. Therefore, we try to establish the relations between thermodynamic
parameters of interacting elements and to apply them for heat conduction
problems.

The difficulty here is that, as was noted by Truesdell and Bharatha[6], “the
formal structure of classical thermodynamics describes the effects of changes
undergone by some single body. While it allows these effects for one body to be
compared with corresponding effects for another body, it does not represent the
effects associated with two bodies simultaneously or in any way conjointly”.
Therefore the “marriage between thermodynamics and continuum mechanics is
neither simple nor straightforward”[4,7].



The proposed algorithm of calculations uses cellular automata technique.
Cellular automata can be viewed as prototypical models for spatially
distributed systems consisting of a large number of simple, identical, and
locally connected components. Cellular automata techniques yield models that
differ from, but are consistent with, those obtained from a continuous approach,
and the simulations based on cellular automata often provide an enormous
increase in computational efficiency[8,9]. The offered algorithm is an extension
of cellular automation because states of cells are identified with thermodynamic
states of elements and the rules of updating of cells’ states applied are not
artificial but follow from thermodynamic laws. Thermodynamic foundation of
these rules is given in the second part of the paper. First, the conditions for the
thermodynamic descriptivity are established. Further, these conditions are
applied to the interaction between three neighbouring elements or cells. As a
result, a relationship is obtained coupling the non-equilibrium state of an
element with the states of its neighbours. This condition is used in the rule for
updating of cells’ states in the simulation of a one-dimensional heat conduction
problem. It is shown that this algorithm can be reduced to the classical finite-
difference approximation in the case of homogeneous solids. The results of
calculations for the temperature distributions in a stationary layer are
presented in the third part for various temperature gradients. In the case of
solids, steady-state temperature profiles are strongly linear in full
correspondence with the classical theory. They become significantly non-linear
in water, especially in regions of phase transitions and under sufficiently strong
gravitation. Some conclusions are given in part four of the paper.

Thermodynamic background

We shall be restricted to the one-dimensional heat conduction problem. It is
quite natural to begin from the most simple case in the elaboration of a new
method because of easy and clear presentation of results. Thus, the problem
under consideration can be formulated as follows: what kind of temperature
distribution has an infinite layer placed between parallel surfaces each of which
has its own specified course of temperature variation? We apply the cellular
automata technique for the solution of the formulated problem. As it is
known[8,9], a cellular automation is spatial lattice of N cells, each of which is in
a certain state at time t. Each cell follows the same rule of updating its state.
The cell’s state at time t + 1 depends on its own state and the state of
neighbouring cells at time t. The cellular automation starts with some initial
configuration of cell states, and at each time step the states of all cells in the
lattice are updated simultaneously.

Turning to the heat conduction problem, we divide the layer into N sublayers,
each of which corresponds to a cell. Each sublayer has the same size h so that
full thickness is H = Nh. The state of each cell we determine as the
thermodynamic state of the corresponding sublayetr.
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The essential feature of cellular automation is the rule of updating of cells’
states. Usually such a rule is expressed as a reference table connecting the state
of a cell with its local neighbourhood.

To formulate the rules of updating of cells’ states, we shall consider previous
local interaction between these cells. For the description of interaction we shall
be guided by a general principle, according to which of the thermodynamic
laws should be enforced in each separate cell, and in any of their set.
Accordingly, the interaction between any two neighbouring cells should satisfy
the conditions of coexistence of these cells in the structure of an extended
system, including both considered cells.

System 1 System 2

System 12

We shall show the general expression for the variation of internal energy in the
extended system as follows:

(H_)r]g = d”’l -+ ('”JFQ - (f.(.*:]_g, (4)

where E,_, is the energy of interaction between subsystems 1 and 2, which is
considered as a function of state.

Owing to the additivity of energy, we can expand the interaction energy into
two parts, which correspond to each subsystem

dE]_Q = I’EEI +‘ d’.;g, (5)
and rewrite the expression of energy variation in the form
fH_.'I]'z = d{jl + (HJIQ -4 dEl + ﬂ!F_:g, (6)

Using property of internal energy as being a function of state, we shall present
its total differential in the form

At/ 7 i
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where variables T, V, M are considered as independent.
Applying this procedure to each system, we have
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Since T, V and M variables are independent, all three parts are equal to zero
separately, i.e.
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The first of the obtained conditions depends on temperature variations and
determines the heat capacity of the integral system. The third one is used for
entropy calculations. The second condition is most useful for our goals. It
connects not only parameters of systems 1 and 2 with those of the integral
system 12, but also parameters of systems 1 and 2 themselves. Consequently, it
is a necessary condition for the consistency of thermodynamic states in
interacting systems. Together, these conditions ensure the equivalence between
the thermodynamic description on the level of subsystems and that on the level
of the integral system. To emphasize this fact, in what follows we refer to them
as the thermodynamic descriptivity conditions.

If we apply the thermodynamic descriptivity conditions to the interaction
between three systems contacting each other as shown below:

System 1 System 2 System 3

it should be done both for systems 1 and 2 and for systems 2 and 3

hey ey [ duy iteay
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where g;; is the interaction energy per unit mass for the system i with respect to
the system j. Thus, to different interactions there should correspond various
energy dependencies.

The process of heat conduction can be characterized by the symmetry of
interactions with respect to neighbouring elements. Owing to the symmetry of
the problem, we have no preferences between systems 1 and 3 with respect to
system 2, because heat diffusion is independent of a direction. Consequently,
their actions relative to system 2 should be equal
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Then we can subtract the second thermodynamic descriptivity condition from
the first one
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The subtraction can be interpreted as the total external action relative to system
2, which results in the influence of systems 1 and 3 simultaneously. Therefore,
we can represent the thermodynamic descriptivity conditions in terms of the
states of neighbouring systems only
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Thus, now we have the method for the calculation of the state of a system if
states of its neighbouring systems are known. It is the basis of the algorithm for
heat conduction simulations similar to cellular automata.

Simulations of one-dimensional heat conduction
Remember that we have N cells of identical size, each of which corresponds to a
sublayer. The initial situation is given by values of temperatures and pressures
in each cell. We suppose that in the initial situation all sublayers have the same
temperatures, T, = T, [Ji, 1 <i< N. In a moment, one of the boundaries receives
another value of temperature and holds it in time.

To obtain the values of temperatures in the next time step, we apply a
recurrent relation as the leading part of the rule of updating of cells’ states

(3“='J<+1) 2L [(a“i-ﬁ:) + (@Ltﬁ) ] (17)
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which follows from the condition of local interaction between thermodynamic
systems. Supplementary conditions needed to completely determine the
thermodynamic state of a cell are equations of state and usual thermodynamic
relations.

We start with the case of solids. In this case, mechanical properties are
determined usually by means of the Young's modulus, G, and the Poisson’s
ratio, v. Thermal properties are taken into account by the thermal expansion
coefficient, a. Generally speaking, all properties of solids depend on




temperature. However, in the first approximation, we can consider them as
uniform, as it is treated in a lot of applications.

From the thermodynamic point of view, it is more convenient to use the bulk
modulus, K,

K= G 18
KL = 20) (18)
because it has the clear thermodynamic meaning, namely,
3]
K= —v (7?3) , (19)
v T

where v is the specific volume, p is pressure, T is temperature. The thermal
expansion coefficient is expressed in thermodynamic terms as well

B 1 { én )
“=\ar N (20)

The product of the bulk modulus and the thermal expansion coefficient
determines one more thermodynamic derivative

, dp\ t {0y _ {dp
all = —n (OIE)T; (;)_?_)p = (97' ", (21)

which is immediately contained in the thermodynamic descriptivity conditions,
because owing to the differential equations of thermodynamics,

Ju L Os dp
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Our assumption about the uniformity of thermal properties simplifies the rule
of cells’ states updating (17)

K e = 5 (oW T ~poas o K Tk = s} (23)

In the case of a homogeneous medium with uniform pressure, all sublayers have
the same thermomechanical properties, and the temperature in each sublayer is
determined as the arithmetical mean of its neighbour’s temperatures at the
previous time step

1 g

7 (T + Tiga i), (24)
and it is fully independent of the kind of material. It must be noted that the
latter relation is identical to that for the random walk of particles on the straight
line. It is easy to see that such a rule is equivalent to the finite-difference

Ta‘,k+1 =
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Figure 1.
Evolution of
temperature
distributions in a
homogeneous solid
layer (copper), AT =
100°K, p = latm

algorithm for heat conduction equation. In fact, we can rewrite this relation in
the form

1 , .
Ti.k-l—! - Tg.k = ; (Tiq,k - 2?i,i- + ‘FH-I‘k)- (25)

If we introduce the usual dependence between space and time steps

A h?
- (26)
pe 27

we obtain after dividing both parts of the relation (25) by the same value of time
step T
Vikvs — Tik ATive =20+ 1Tk

T - ; . h 2 - @n

The latter equation is nothing more that the well known finite-difference
approximation of heat conduction equation[10]. Thus, the proposed algorithm
can be reduced to the usual one in this simple case. As a result, we come to
strong linear steady-state temperature distribution across the solid layer in full
correspondence with the classical theory (Figure 1).

In the case of water, the situation becomes more complicated. The rule of
cell’s states updating

(JIP' L4l 1 . H.i”l'—l.l: P f;);!r'+|_j;
, == |- o —marF a5/ — i
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is applied together with the equation of state (3)
(BT OOt
Per Por

(29)
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to perform calculations. The pressure in each cell is prescribed as homogeneous
or hydrostatic. Again, we start from the uniform initial temperatures, when one
of the boundaries suddenly receives another temperature value and holds it in
time. A steady-state temperature distribution is reached after heat flux goes to
constant. The typical number of cells in our automation was 25.

The results of calculations of temperature distributions in stationary
homogeneous water layer with sufficiently large temperature gradients (AT =
90°) are presented in Figure 2. The temperature profiles are given at every next
50 dimensionless time steps. In this case, the obtained final steady-state
distribution of temperature is essentially non-linear.

Temperature, K
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3601
350
340
330
320(-
310
300
290
280
0

5 10 15 20 25
Dimensionless thickness

The influence of gravitational force is taken into account by prescribing of the
hydrostatic values for cell’s pressures

pi = pioa + pghi, Yk (30

This influence displays itself in the non-linearity of the steady-state
temperature profile (Figure 3) even for small temperature gradients but under
sufficiently strong gravitational force (h = 0.5m). It must be noted that the form
of the latter distribution is significantly different from that in the homogeneous
case. In the region of liquid-vapour phase transition we obtain one more
example of the non-linear steady-state temperature distribution for small
temperature gradient (Figure 4). Finally, in the region of solid-liquid phase
transition the form of the steady-state temperature profile is rather similar to
those under the influence of gravitation, as it can see in Figure 5.

Certainly, the features of the temperature distributions in water are mainly
determined by the equation of state (3). The method of simulation only provides
its complete application.
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Figure 2.

Evolution of
temperature
distributions in a
stationary water layer
with large temperature
gradient, AT = 90°K,
p = latm
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Figure 3.

Evolution of temperature
distributions in a
stationary water layer
under influence of
gravitational field,

AT =20°K, p = latm

Figure 4.

Evolution of
temperature
distributions in a
stationary water layer
in the region of liquid-
vapour phase transition,
AT =10°K, p = latm
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Conclusions

The offered method is rather a tool for the direct simulation of heat conduction
process than for the solution of partial differential equations. In this method, the
correspondence is used between points in the Gibbsian phase space and states
of elements in a continuum. Therefore, the continuum elements are considered
as cells, which states are changed according to thermodynamic laws. The
appropriate choice is needed for the interaction energy expression in every
particular case. Thermophysical properties of a substance are taken into
account immediately by equations of state. The cellular automata technique is
very convenient because every thermodynamic system must be homogeneous,
and thermodynamic parameters have the property of being functions of state.
The testing of this method showed that its predictions agree with those of the
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classical theory of heat conduction in the case of solids. At the same time, non-
linear temperature distributions for large temperature gradients in water are
different from classical ones, especially under the influence of gravitational
forces and in the regions of phase transitions.
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Figure 5.

Evolution of temperature
distributions in a
stationary water layer in
the region of solid-liquid
phase transition, AT =
20°K, p = latm




